
Carnegie Mellon
Software Engineering Institute

A Model Problem
Approach to
Measurement-to-
Track Association

Grace A. Lewis

B. Craig Meyers

September 2003

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

COTS-Based Systems Initiative

Unlimited distribution subject to the copyright

TECHNICAL REPORT
CMU/SE1-2003-TR-020

ESC-TR-2003-020

20031202 087

CamegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

A l\/lodel Problem
Approach to
Measurement-to-Track
Association
CMU/SEI-2003-TR-020
ESC-TR-2003-020

Grace A. Lewis
B. Craig Meyers

September 2003

COTS-Based Systems Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published
in the interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document
should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center. The Government of the United States has a royalty-
free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any
manner, and to have or permit others to do so, for government purposes pursuant to the copyright
license under the clause at 252.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of
our Web site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract ix

1 Introduction 1

2 Model Problem 3
2.1 Model Problem Selection Criteria 3
2.2 Model Problem Definition 3
2.3 Model Problem Selection 6

3 Modeling of the Measurement-to-Track Association Model Problem Using
UML 9
3.1 Approach 9
3.2 Use Case Diagrams 9
3.3 Domains 14
3.4 Sequence Diagrams for Domain Interaction Analysis 15
3.5 Class Diagram 16
3.6 Sequence Diagrams for Object Interaction Analysis 21
3.7 Class Collaboration Diagram 23

4 Candidate Extensions 27

4.1 Relation to Performance Considerations 27
4.2 Other Filter Types 28

4.2.1 Geographic Filters 28
4.2.2 Generic Filters 31
4.2.3 Composition of Filters 35
4.2.4 Distribution of Filter Information 36

4.3 Doctrine: An Example of Filter Application 38
4.4 Use of Object Query Language 39

5 Summary 41

Appendix A Additional Use Cases 43

Appendix B Details of Classes 53

Appendix C Additional Sequence Diagrams 63

CMU/SEI-2003-TR-020

Appendix D Measurement-to-Track Association in the Sensor IVIanagement

Domain ^^
D.1 Changes to the Design of the Model Problem 69
D.2 Consequences of Measurement-to-Traok Association in the

Sensor Management Domain 70
D.3 Summary ^^

References 73

CMU/SEI-2003-TR-020

List of Figures

Figure 1: Overall Context for Model Problem 4

Figure 2: Measurement-to-Track Association Use Case Diagram 10

Figure 3: Measurement-to-Track Association Use Case 12

Figure 4: Create New Track—Basic Course for the Measurement-to-Track
Association Use Case 13

Figure 5: Domain Model 15

Figure 6: Sequence Diagram for the Measurement-to-Track Association
Use Case 16

Figure 7: Class Diagram for the Track Management Domain 20

Figure 8: Sequence Diagram for the Measurement-to-Track Association Use
Case Basic Course—Create New Track 22

Figure 9: Sequence Diagram for the Measurement-to-Track Association Use
Case Alternate Course—Update Track 23

Figure 10: Class Collaboration Diagram for the Track Management Domain 25

Figure 11: Overall Model Problem and Solution Context 27

Figure 12: Example of an LLE Filter 28

Figure 13: Class Specification for LLE Filter 29

Figure 14: Specification for the Degrees User-Defined Type 30

Figure 15: Specification for the Data Miles User-Defined Type 30

Figure 16: Example of an Annular Filter 30

Figure 17: Class Specification for Annular Filter 31

Figure 18: Specification for the Annular Filter Constraint User-Defined Type 31

CMU/SEI-2003-TR-020

Figure 19: Relation of <Attribute, Operator, Value> 32

Figure 20: Class Specification for Generic Filter 33

Figure 21: Specification for the Generic Filter Operator User-Defined Type 34

Figure 22: Specification for the Filter Criterion User-Defined Type 34

Figure 23: Class Hierarchy for Filters 35

Figure 24: Composition of Annular and Rectangular Filter 36

Figure 25: Contexts for Object Distribution 36

Figure 26: Update Track—Alternate Course for the Measurement-to-Track
Association Use Case 43

Figure 27: Filter Applied to Initial Tracks Returns No Tracks and Track is Created—
Alternate Course for the Measurement-to-Track Association Use

Case 44

Figure 28: Filter Applied to Propagated Tracks Returns No Tracks and Track is
Created—Alternate Course for the Measurement-to-Track Association

Use Case 45

Figure 29: Create Unassociated Measurement—Alternate Course for the
Measurement-to-Track Association Use Case 46

Figure 30: Filter Applied to Initial Tracks Returns No Tracks and Track is Not
Created—Alternate Course for the Measurement-to-Track Association

Use Case 47

Figure 31: Filter Applied to Propagated Tracks Returns No Tracks and Track is Not
Created—Alternate Course for the Measurement-to-Track Association

Use Case 48

Figure 32: Filter Tracks Use Case 49

Figure 33: Filter Tracks and Create Copies of Matching Tracks—Basic Course for
the Filter Tracks Use Case 50

Figure 34: Refilter Tracks and Remove Non-Matching Tracks—Alternate Course for
the Filter Tracks Use Case 50

Figure 35: Propagate Tracks Use Case 51

Iv CMU/SEI-2003-TR-020

Figure 36: Propagate Tracks—Basic Course for the Propagate Tracl<s Use Case 51

Figure 37: Sequence Diagram for tine IVIeasurement-to-Track Association Use Case
Alternate Course—Filter Applied to Initial Tracks Returns No Tracks and
Track Is Created 64

Figure 38: Sequence Diagram for the Measurement-to-Track Association Use Case
Alternate Course—Filter Applied to Propagated Tracks Returns No Tracks
and Track Is Created 65

Figure 39: Sequence Diagram for the Measurement-to-Track Association Use Case
Alternate Course—Create Unassociated Measurement 66

Figure 40: Sequence Diagram for the Measurement-to-Track Association Use Case
Alternate Course—Filter Applied to Initial Tracks Returns No Tracks and
Track Is Not Created 67

Figure 41: Sequence Diagram for the Measurement-to-Track Association Use Case
Alternate Course—Filter Applied to Propagated Tracks Returns No Tracks
and Track Is Not Created 68

CMU/SEI-2003-TR-020

CMU/SEI-2003-TR-020

List of Tables

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Description of the Track Class 19

Category of Problems for Object Distribution 37

Descript

Descript

Descript

Descript

Descript

Descripti

Descript!

Descripti

Descript

Descripti

on of the Associated Measurement Class 53

on of the Candidate Observation Class 54

on of the Filter Class 55

on of the Measurement Class 56

on of the Observation Class 57

on of the Observation Manager Class 58

on of the RBE Filter Class 59

on of the Track Class 60

on of the Track History Class 61

on of the Unassociated Measurement Class 62

CMU/SEI-2003-TR-020 VII

CMU/SEI-2003-TR-020

Abstract

This is the first in a series of reports that illustrate the use of model problems in the design of a
system. The problem considered is measurement-to-track association. A "track" represents the
state data about an object in the environment, and has a set of associated attributes. "Measure-
ment-to-track association" is the process of determining the relation between a measurement
and an existing track. In this process, tracks that meet particular attribute criteria can be
selected via filters. This report examines the development and application of filters that can be
used as selector mechanisms. The report also presents an initial design of the model problem,
by using concepts and constructs from Unified Modeling Language (UML), Executable UML
(xUML), and Object-Oriented Analysis (OOA). Also covered are possible extensions to this
work, related to performance considerations, additional filter types, and the distribution of fil-
ter information.

CMU/SEI-2003-TR-020

CMU/SE1-2003-TR-020

1 Introduction

There are many issues in the development of large, complex, distributed systems. There are
just as many approaches to dealing with these problems. In this report we start to develop a
model problem that is representative of an important problem for a particular class of systems.
The problem considered is measurement-to-track association and the development (and appli-
cation) of filters that can be used as a selector mechanism. These filters must be sufficiently
general that they can be constructed, and applied to, an arbitrary class/object combination.

This is the first in a series of reports that illustrate the use of model problems in the design of a
system. This report focuses on the specification of the problem and an initial design. The
choice of a final design is influenced by many factors. In this case, we are especially interested
in performance properties of the system. Hence, subsequent work will illustrate the use of a
qualitative performance model, as well as quantitative aspects of that model to yield a solu-
tion. Performance considerations can often drive a solution approach and there are iterations
between a design and information concerning the performance of that design.

This report is organized in the following manner: In Section 2 we describe the role of model
problems in general, and then specialize that discussion to the problem at hand. A Unified
Modeling Language representation of the problem appears in Section 3. Possible extensions of
this work can be found in Section 4. A brief summary of the report appears in Section 5. A
number of appendices accompany this report which describe details associated with use cases,
classes, sequence diagrams, and a potential alternate design for the model problem.

We acknowledge discussions with Holly Hamilton and Brad Leon during the development of

this report.

CMU/SEI-2003-TR-020

CMU/SEI-2003-TR-020

Model Problem

2.1 Model Problem Selection Criteria
It is appropriate to briefly describe how we use the term model problem. In assessing the selec-

tion of a model problem we are concerned with several factors, among them

• Is the model problem common to the design of a system? Although there are many aspects
of the design of a system, there are cases where such aspects have a recurring theme.
Because such themes may appear in many aspects of the solution, the more common they
are, the more likely a solution to them will have value. That is, one hopes that the solution
to a particular model problem can be reused across the design of the system.

• Does the model problem help mitigate a risk? There are many potential risks associated
with the design of a system. We are concerned with problems that present a risk whose
consequences could adversely affect some aspect of system operation. In particular, the
aspects we are concerned with are those related to system performance, reliability, or other

quality attributes.

• Does the solution of the model problem lend itself to reuse in other contexts? For example,
suppose one wishes to develop a performance model of a system. If it is possible to
develop a performance characterization of the model problem, then the understanding of
that performance characterization may be applied to other contexts as well.

Various characteristic problems inherent in a system may exhibit different aspects, related to
the above. Of course, when a model is characterized by multiple characteristics, it assumes

even more importance to the successful development of a system solution.

2.2 Model Problem Definition
The overall context for the model problem treated in this report is track management. We
define a track to represent the state data about an object in the environment. A track has a set

1. Note that in no way do we use the term model problem to be synonymous with a toy problem.
Toy problems are used for discovery or familiarization and are usually meant to be thrown away.
Model problems, on the other hand, are focused on solving a particular problem and the results
are documented to guide design and implementation.

CMU/SE1-2003-TR-020

of associated characteristics, or attributes. For example, an aircraft might have position and
speed as attributes. The context for the overall problem'appears in Figure 1.

o
V

/

J
M fo o

o

J ^"

O
o o

V
Platforms Sensors Tracks

Figure 1: Overall Context for Model Problem

The processing suggested in Figure 1 includes the following:

• There is a set of tracks in the environment.

• Sensors provide measurements about tracks. Sensors may be of different types.

• Platforms contain one or many sensors.

We do not seek to identify all the details associated with the basic processing shown in Figure
1. For example, a significant problem is the distribution of information (such as track data or
sensor measurements) among multiple platforms. There clearly is a difference between a plat-
form-centric view of the environment and a multi-platform view of the environment!

An interesting aspect of track management deals with association as defined below:

association: the process of determining the relation between a measurement

and an existing track.

We will call this type of association measurement-to-track association. During measurement-
to-track association, initially there is a set of tracks. At a time t a sensor performs a measure-

ment of the environment which results in performing the following operational thread:

1. [Input] The data collected by the sensor is reported to the system through a communica-
tions link. The sensor may report values such as the latitude and longitude of contact infor-

mation.

2. This operational thread assumes the existence of fracl<s that have been created over time as a
result of the received measurements. At system Initialization there are no tracks.

CMU/SEI-2003-TR-020

2. [Validation and Pre-Processing] The reported data is first validated. For example, there
may be acceptable ranges of data and these are checked to make sure that the reported data
is not corrupted. Then the data has to be adjusted to account for any bias in the sensor
itself.

3. [Distribution] The sensor measurement data may be distributed to other systems, some of
which may reside on different platforms than the platform providing the sensor measurement.

4. [Transformation] The measurement data may have to be transformed so that it is consis-
tent with track data. For example, some form of coordinate conversion may have to be
applied to the measurement data.

5. [Filtering] From the set of all tracks, a subset of tracks is chosen as a candidate match for
the measurements. For example, the criteria for filtering tracks may be based on nearest-
neighbors: Only those tracks that are within a certain distance of the position of the mea-
surement are considered. This aspect involves development and application of a filter.
Note that the filter is created dynamically (during runtime) based on the position of the
measurement data reported.

6. [Propagation] The candidate tracks have associated state data that is valid at times other
than the reported measurement time t. Hence, the candidate tracks are propagated in time
so that the track data is extrapolated to the time of the measurement data.

7. [Re-Filtering] The propagated tracks have to be re-filtered to make sure that they are still
within the initial filtering criteria; it is possible that an initial candidate track is propagated
out of the filter.

8. [Evaluation] Algorithms are applied to the propagated track data and the reported mea-
surement to determine the likelihood that the measurement should be associated with an
existing track. Comparison of the appropriate track attributes are made between the candi-
date tracks and the attributes provided by the measurement. The evaluation algorithms
may vary depending upon the type of measurement.

9. [Decision] Based upon some selection criteria it is determined if the measurement report
should be associated with one of the candidate tracks. Several options are possible:

If any of the filtering steps returns no tracks, or if all candidates tracks have an associ-
ation value that is below some acceptable threshold, an algorithm is applied. This
determines if the measurement provides additional data so that one can decide, from
looking at the set of yet unassociated measurements, if there is enough information for
a new track to be created. If there is enough information, a new track is created based
on the reported measurement data plus the set of related unassociated measurements.

For the candidate track whose association value is larger than some acceptable thresh-
old, track data is updated with the reported measurement data and the measurement is

associated with that track.^

CMU/SEI-2003-TR-020

The above appears simple and straightforward, but it is not; for example, the algorithm to eval-
uate measurements against tracks is non-trivial. Further, there are performance implications
for the end-to-end processing of a measurement.

2.3 Model Problem Selection
The selected model problem is the association of a measurement report from a sensor to a
track—measurement-to-track association. The model problem design and implementation will
be presented in the context of a specific modeling and code generation tool.

Measurement-to-track association as described in Section 2.2 raises a number of issues.

• Filtering and Re-Filtering: There are several questions regarding filtering that must be
answered as part of the measurement-to-track association process. For example, what is
returned by the application of a filter when it produces a set of filtered tracks? Possibilities

include that

a list of the identifiers of the tracks satisfying the filter criteria is returned

a list with copies or "clones" of the matching tracks is returned

There are also general questions about the character of the filter that is applied. A filter
could represent a general query corresponding to certain values of the track attributes. It is
a general query in that the filter can be applied to attributes on a one-to-one basis. How-
ever, other forms of a query are possible. For example, if one wishes to construct a filter
that can be applied to determine a candidate set of tracks within a specified range of a
given point, such a filter would be based on an algorithm whose parameters are attributes
of the object. In the case of the range, the algorithm would involve a computation of dis-
tance. We can also envision cases where a composition of filters may be applied.

• Evaluation: The algorithms for evaluation are very complex and computation-intensive.
What are the performance consequences of this intensive and complex computation that is

performed many times?

• Data structure design: It is common for tracking systems to use specialized structures and

algorithms for the storage and manipulation of data such as track data. For example, hash
coding schemes and algorithms are often used as a way to increase search performance.
However, if one wished to adhere to a purely object-oriented approach and the constructs
of a chosen implementation language, what are the implications for data storage and
manipulation?

3. We assume that a measurement associates to only one track.

CMU/SEI-2003-TR-020

Given these issues and recognizing the need for an end-to-end problem in the context of a sin-
gle platform, it is worth assessing the combination of filtering, propagation, evaluation, and
decision as a model problem in light of the criteria specified in Section 2.1. In particular,

• The use of data filtering and propagation is very common to the system under consider-
ation.

• There is a risk associated with the use of filters as described in the tentative design. In par-
ticular, if the time to create and apply a filter to a system that contains a large number of
tracks is prohibitive, then it may warrant consideration of a different design approach. The
complexity of the algorithms for evaluation (and some of the decision making) could also
require large amounts of computation. Furthermore, because of the amount of measure-
ment data that is received, the association process is performed many, many times.

• If there is performance data about the elements of the design (such as the time to create a
filter or to perform propagation and evaluation) then that information may be integrated to
yield a performance model of a thread of the system (in this case, we define a thread to be
the sequence of operations described in Section 2.2 on page 3). Thus, we can reuse the
solution approach to the model problem in the context of a performance model.

The validation, pre-processing, distribution, and transformation aspects of measurement-to-
track association will not be considered part of this model problem. Validation, pre-process-
ing, and transformation are relatively straightforward and should be implemented outside of
measurement-to-track association so that only valid measurements are provided for associa-
tion. Distribution is a different problem of sufficient importance that it should be treated in a
general context. In particular, one is concerned with the manner in which state data about the
system is distributed among its constituent elements.

Taken together, the preceding discussion illustrates the value of model problems to the design
of a system. Model problems can help answer important questions such as: If there is a system
with a very large number of objects, what are the performance implications for a given design
approach? Is each measurement-to-track association operation going to be a separate thread?
What is the time to process a measurement vs. the arrival rates of measurements? What if data
starts coming in faster than the thread can process? What is the real end-to-end performance of
the system? Can all these questions be addressed in the context of the selected modeling and
code generation tool? All these questions must be addressed in order to develop a successful
implementation.

CMU/SEI-2003-TR-020

CMU/SEI-2003-TR-020

Modeling of the Measurement-to-Track
Association IVIodel Problem Using UIVIL

3.1 Approach
In this section we illustrate the measurement-to-track association model problem using Uni-
fied Modeling Language (UML) and concepts from Executable UML (xUML) [Mellor 02]
and Object-Oriented Analysis (OOA) [Shlaer 92].

Briefly, the process used involves the

identification of use cases related to measurement-to-track association

partitioning of the measurement-to-track association problem into domains

development of sequence diagrams corresponding to the domain interaction to satisfy the
execution paths listed in the use case descriptions

development of a class diagram for each domain

development of sequence diagrams corresponding to the object interaction to satisfy the
execution paths listed in the use case descriptions

development of a class collaboration diagram for each domain

At this level of analysis we do not address concurrency issues. These issues will be addressed
during detailed design.

The main modeling tool used in this report is iUML by Kennedy Carter, Ltd. (http://
www.kc.com). Rational Rose by IBM (http://www.rational.com/products/rQse/index.jsp) is
used for some of the modeling that is not supported by the iUML tool.

3.2 Use Case Diagrams
A use case represents a coherent unit of functionality provided by a system, a subsystem, or a
class. A use case diagram shows the relationship among use cases within a system and its
actors. Actors are external entities (people or other systems) who interact with the system to
achieve a desired goal.

The use cases related to measurement-to-track association are represented in the use case dia-
gram in Figure 2.

CMU/SEI-2003-TR-020

Comms Link

Figure 2: Measurement-to-Track Association Use Case Diagram

The main use case in the diagram is Measurement-to-Track Association. The actor that inter-
acts directly with this use case is the communications link. Sensors communicate with the sys-
tem through the communications link to provide measurements to be potentially associated
with a track. The Measurement-to-Track Association use case includes two additional use
cases: Filter Tracks and Propagate Tracks. The Filter Tracks use case searches a set of tracks
for those matching the set of criteria provided by the filter and the Propagate Tracks use case
propagates the characteristics (e.g. velocity, position) of a set of given tracks in time. These
two use cases have been specified separately because we believe that they are of sufficient
generality that they might apply to other use cases outside of measurement-to-track associa-

tion.

There are a number of generally accepted formats for use case description [Booch 99, Cock-

bum 00]. The elements we will use are

• name: name of use case

• purpose: brief description of the purpose of the use case

• precondition: conditions that must exist before the use case takes place

10 CMU/SEI-2003-TR-020

requirements satisfied: requirements satisfied by the use case (usually requirement number

from requirements document)

basic course: captures normal behavior associated with the use case

alternate courses: capture unusual behavior such as exception handling and error behavior

includes: use cases included by this use case

included by: use cases that include this use case

extends: use cases extended by this use case

extended by: use cases that extend this use case

communicates with: external entities (actors) participating in the use case

performance specifications (optional)

trigger, external unsolicited event that initiates execution of the use case

- periodicity: nature of trigger event, periodic or aperiodic

rate: periodic frequency if event is periodic, or average and/or maximal arrival rate if
event is aperiodic

For the basic course and each of the alternate courses the following information is provided:

• course name: name for the course

• description: set of steps that take place during the course

• postcondition: conditions that exist after the steps outlined in the course are executed

• performance specifications (optional):

response

required response time

response type: hard or soft deadline

source of requirement: source of the performance requirement

The Measurement-to-Track Association use case is described in Figure 3 and the basic
course—Create New Track—is described in Figure 4.

CMU/SEI-2003-TR-020 11

Use Case : 1 : Measurement-To-Track Association

Purpose
A measurement is receh-ed from a seusor through the
communications link to be e\-aliiated for potential
association with an existing track.

Precondition
1. Tliere is a set of tracks, AND
2. At a time t a measurement from a sensor is recei*ed
tlirough the communications Hnk.

Requirements Satisfied by this Use Case
<None>

Basic Course :
Create New Track

Wternate Courses
L^date Track
Fiber Applied to Initial Tracks Returns No Tracks and Track is Created
Filter Applied to Propagated Tracks Returns No Tracks and Track is Created
Create Uliassociated Measurement
Filter Applied to Initial Tracks Returns No Tracks and Track is Not Created
Filter i^ppHed to Propagated Tracks returns No Tracks and Track is Not Created

includes
-> 2: Fiker Tracks
-> 3: Propagate Tracks

Included By

Extends

Extended By

Communicates With
-> 2: Comnis Link

Figure 3: Measurement-to-Track Association Use Case

12 CMU/SEI-2003-TR-020

Use Case : 1 : Measurement-To-Track Association
Course : Create New Track

Description
1. Measurement collected by the sensor is reported to tlie
system tliroiigh tlie communications link.
2. Fiber Tracks use case is invoked and a set of filtered

tracks is returned.
3. Propagate Tracks use case is mvoked so that the filtered
tracks are propagated to measurement time t.
4. Filter Tracks use case is invoked again with the
propagated tracks to make sure that the initial criteria
still appfy. Candidate tracks that do not match the filter
criteria are eliminated.
5. Algorithms are applied to the candidate tracks to
determine the IflceHhood that the meastirement should be
associated with a candidate track.
6. Because there were no candidate tracks that showed
association values above the accepted threshold, an
algorithm is {q)plied to determine if the measurement
pro\Tdes additional data so that one can decide from looking
at the set of yet unassociated measurements if there is
enough information for a new track to be created.
7. Because there is enough infonnatioru a new track is
created based on the reported measurement data plus the set
of related unassociated measurements.
8. The measurement is added to tlie set of associated
measurements and linked to the newly created track.

Postcondition
A new track is created and the measurement is added to the
set of associated measurements and linked to the newly
created track.

Figure 4: Create New Track—Basic Course for tlie Measurement-to-Tracl<
Association Use Case

The alternate courses for the Measurement-to-Track Association use case and the Filter Trades

and Propagate Trades use cases are described in Appendix A on page 43.

CMU/SEI-2003-TR-020 13

3.3 Domains
Domains represent the different subject matter areas that we must understand to build a system
[Mellor 02]. For the measurement-to-track association model problem there are two domains

of interest: Track Management and Communications Interface.

. Track Management: Provides the track storage as well as the track association, filtering,

and propagation functionality.

. Communications Interface: Receives and translates measurements received from sensors

through the communications link.

Figure 5 shows the domain model for the measurement-to-track association model problem.
The Track Management domain has a dependency on the Communications Interface domain.

These domains most likely will include functionality to support other use cases. We are only
interested in the functionality to support the measurement-to-track association use case. There
are surely other domains of relevance to the whole system, but these are not included in the

domain model because they are outside the scope of the model problem.

4 In Object-Oriented Analysis, domains are classified into four types according to the role each
plays in the finished system: application domains, service domains, architectural domains, and
implementation domains [Shiaer 92]. In this case. Track f^anagement is an application domain
and Communications Interface is a service domain.

5 It is also possible to separate the storage functionality from the association, filtering, and propa-
gation functionality into different domains. For the purposes of this model problem, it does not
make a difference and therefore we will consider them as part of the same domain.

14
CMU/SEI-2003-TR-020

Communications
Interface

Figure 5: Domain Model

An alternative approach that considers locating measurement-to-track association in the Sen-

sor Management domain is presented in Appendix D.

3.4 Sequence Diagrams for Domain Interaction
Analysis

A sequence diagram presents the temporal interaction between objects as a set of exchanged
messages. A sequence diagram has two dimensions. The vertical dimension represents time
and the horizontal dimension represents the different objects that participate in the interaction.

Normally time proceeds downward.

Another use for sequence diagrams is in Domain Interaction Analysis. Domain Interaction
Analysis is a complementary technique that allows a project team to analyze the dynamics of
the complete system of domains. These sequence diagrams are used to model the interactions
between selected domains in order to satisfy the behavior specified in a particular use case

[Kennedy 02].

The sequence diagrams at this level are extremely simple for the selected model problem, as
can be seen in Figure 6. In this case the horizontal dimension represents domains instead of
object instances. These would be more useful if we were modeling the whole system, where
there is a greater level of interaction expected between domains. Section 3.6 presents sequence
diagrams at a greater level of detail for object interaction analysis.

CMU/SEI-2003-TR-020 15

<Boundary>

1:Measunement

Communications Interface Track Management

2:Measurement Available

J 3:0etermine Association

Figure 6: Sequence Diagram for tine Measurement-to-Track Association Use Case

3.5 Class Diagram
A class represents a concept within the system being modeled. Classes contain data structure
and behavior. A class diagram shows the static structure of the model, as a set of classes and

relationships between classes and other elements of the model.

A number of classes were identified as part of the design process for the Track Management
domain that handles the association of a measurement to a track. In the context of defining the
model problem it is not important to correctly define all attributes for all classes.

A brief description of the classes in alphabetical order follows. It is important to note that even
though the model problem only requires the application of filters to tracks, it is possible to
apply filters to measurements as well. Because of this, the problem has been extended to

observation management, where an observation refers either to a Track or a Measurement.

• Associated Measurement: A measurement that has been associated to an existing track.

• Candidate Observation: When a filter is first applied either to a set of tracks or a set of
measurements, a Candidate Observation is created for each track or measurement that
matches the filter criteria. It is important to note that the Candidate Observation does not
need to contain all the attributes of a measurement or track, only those that are necessary

to make the association.

• Filter: Base class for all filters. At this point only one type of filter will be considered, but
as will be seen in Section 4, other types of filters are possible.

• Measurement: All measurements provided by a sensor or communications interface and
received by the Observation Manager. The attributes in this class have not been fully

defined.

6. These two classes also have a large number of attributes in common.

16 CMU/SEI-2003-TR-020

• Observation: Object data managed within the Track Management domain—measurements
and tracks.

• Observation Manager. Handles the sequence and setup of all the measurement-to-track
association operations.

• RBE Filter: Given a relative position defined by range, bearing, elevation, and a radius,
this type of filter will define a spherical volume. Application of the filter will then identify
the tracks or measurements that lie within the volume determined by the filter.

• Track: State data about a track object. The attributes in this class have not been fully

defined.

• Track History: History associated to a specific track.

• Unassociated Measurement: A measurement that has not yet been associated to an exist-
ing track.

The main class in the Track Management domain is Track. The Track class is a sub-class of the
Observation class. This means that Track inherits all attributes and operations from Observa-
tion. A description of the Track class can be found in Table 1.

A description of the rest of the classes can be found in Appendix B on page 53.

Based on the classes identified previously, these can be combined in a class diagram. The class
diagram in Figure 7 represents the classes and relationships necessary to implement the func-
tionality required by the Track Management domain in reference to the Measurement-to-Asso-

ciation use case.

The class diagram contains two basic constructs. These are

• Classes: These are denoted by the rectangular boxes in the diagram. Each box is divided
into three parts. The top part contains the class name, the middle part contains the
attributes that have been defined for the class, and the bottom part contains the operations
that can be performed on instances of this class.

• Relations: The lines connecting the classes are relations. Relations are labeled by the mod-
eling tool as R#. There are special types of relations, such as R2, that represent a super-
class to sub-class relation (inheritance). Relations also show multiplicity and roles. Multi-
plicity represents the number of instances of each class that form part of the relation. Roles
are the name of the part that each class plays in the relation.

As an example of how to interpret the diagram in Figure 7, the Track class is a subclass of the
Observation class, as expressed by relation R2. The Rl relation applies to the Track class

7. For diagram simplicity, all constructors and all operations that just "feefand '^et" attribute values
are omitted.

CMU/SEI-2003-TR-020 17

through the Observation class. The way to read Rl is "An Observation Manager manages one
or many Tracks; a Track is managed by one Observation Manager." Similarly, R9 is read "A

Track maintains zero or many Track Histories; a Track History is maintained by one Track.
Relation Rll is read "A Track is associated to one or many Associated Measurement; an Asso-
ciated Measurement is associated to one Track." During implementation, these one or many
and zero or many relations can be translated into an associated list or some other data structure
that represents this type of relationship between classes. For example, the Track class could
have an additional attribute of type List that indicates the current relationship between Track
and Track History. This List would contain elements of type Track History. Another way to
represent this relation is as an attribute in the "one-or-many-side" class that refers to the "one-
side" class. For example. Associated Measurement could have an attribute Trackid that repre-

sents the identification number of the associated track.

'Track maintains zero or more Track H/stor/" translates to "Each Track maintains zero or more
instances of Track History."

18 CMU/SEI-2003-TR-020

Table 1: Description of the Track Class

Class Name Track

Description State data about a track object

Attributes

Name Description Type

id (from Observation) Unique identification number
for track

TracklD^

time
(from Observation)

Time of latest observation
associated with the track

Time of Day

latitude
(from Observation)

Latitude of track Real

longitude
(from Obsen/ation)

Longitude of track Real

altitude
(from Obsen/ation)

Altitude of track Real

velocity Velocity for the track object Real

type Type of track; i.e. air, surface,
ballistic, etc.

TrackType''

Operations

Name Description Parameters Return
Type

delete
(from Obsen/ation)

Deletes a track None None

update Updates a track with informa-
tion from a given measurement

measurement: Mea-
surement

None

create Creates a track with informa-
tion from a given measurement

measurement: Mea-
surement

None

moveToHistory Creates a copy of the track in
Trac/cH/sfo/y with its current
values

None None

a. TrackID is a user-defined type that needs to tie specified.

b. Tracl<Type is a user-defined type that needs to be specified.

CMU/SEI-2003-TR-020 19

* i; 0) "- fl)
_ go: OD:
<" ,s in ■§ 4) Jg t- -6 2 -D
O S « g>.«
B B S S ffl

F/gure 7; Class Diagram for the Track Management Domain

20
CMU/SEI-2003-TR-020

3.6 Sequence Diagrams for Object Interaction
Analysis

As previously expressed, a sequence diagram presents the interaction between objects as a set
of exchanged messages. A sequence diagram has two dimensions: the vertical dimension rep-
resents time, and the horizontal dimension represents the different object instances that partic-
ipate in the interaction. Normally time proceeds downward.

The sequence diagrams in this section are at a different level of abstraction from those in Sec-

tion 3.4. The sequence diagram in Section 3.4 represents the interaction between domains to
satisfy the behavior outlined by the Measurement-to-Track Association use case as well as a
subset of the steps outlined in Section 2.2. The sequence diagrams in this section represent the
interaction between objects in the Track Management domain to satisfy the different courses
in the Measurement-to-Track Association use case. Figure 8 represents the basic course—Cre-
ate New Track—and Figure 9 represents one of the alternate courses—Update Track.

Because all constructors and operations that just "set" and "get" values have been omitted
from the class diagram, calls to these operations are represented as text over the arrow mes-
sages that represent the operation(s) that take place. For example, Get Track Data would trans-
late into calls to all the necessary "get" operations.

The sequence diagrams for the rest of the alternate courses can be found in Appendix C on
page 63.

9. The iUML tool selected by the customer does not use sequence diagrams within a domain. In-
stead, it uses one class collaboration diagram per domain, as presented In Section . We believe
that sequence diagrams are useful for analysis at this level, which is why they were developed
using Rational Rose and are included in this report.

CMU/SEI-2003-TR-020 21

A
: Communications

Link

: Observation
Manager

: Unassociated
Measurement

measurement
associateMeasurementToTracl(S()

: Track : Candidate
Qbsenatjon

create(measuremfntData)

G
create (range, bealing, elevation,radius

apply (isfOTTracks)

■: Get Track Da a
 >'
•: applyFormulaJ)

: Associated
Measurement

(if track salisfiei tiller criteria] create()

■: propagat9{time) ti{tirt

reApply (listOf C andidateTracks)

[if candidat

Get Candidate Track Data

applyFormula()

; track does not tatisfy filter criteiia] delete()

T
•: associate{)

{I no tracks wtiere associalionValue >= associafiomhrestiold] formTrack(
I

": Get Measunerpent Data rergei

tojcr fit enough data toTcreale track] create(measurementDatp)

•; mo\eToAssocated()
*: ctBate(measliremenlData)

•: delete() 7]
/ I

•: linkToTrackftracklD;

--VtT
These opeiatbns occur br all ttieunassxlated t\
measuremenis that contributed to the forming of the
track.

Figure 8: Sequence Diagram for tiie MeasuremenMo-Tracl< Association Use Case
Basic Course—Create New Tracl<

22 CMU/SEI-2003-TR-020

: Communications Manager
: Measurement

measurement
associateMeasure|TienlToTracl<s()

: Track : Track History I

create (measuementData)

create (range, , beajfng, elevation,radus)

(listOfTracks) apply (listdfTracks)

•: Get Track Data
 — V
applyFotmula()

[if track satisfies fi ter criteria] create{)
 ^1

reApply (listOf CapdidateTracks)

±; propaji

didateTracks) |

'; propagiate(time)

: Get Candidate Track Data

applyFomiula()

if candidate track does not sslisfy filter criten'ti]
 54

ioci

delete{)

: ass(pciate()

: |if associationvilue >= associalionTtirestioldl mo«ToHlistory() T

I ' copym

update()

4

copyTrack()

These two operations alsoii^
only take place if
associationValue >=
associationTtirestiold for
lliat particular track.

Figure 9: Sequence Diagram for the Measuremer)t-to-Tracl< Association Use Case
Alternate Course—Update Tracl<

3.7 Class Collaboration Diagram
A class collaboration diagram is a graphical summary of the interactions between the classes

in a domain.'° Messages with half arrowheads represent asynchronous signals from one state
machine to another. Messages with full arrowheads represent synchronous operation invoc-

10. In traditional UML, a collaboration diagram represents the interaction between objects to satisfy
a particular use case—similar to a sequence diagram but less tightly organized and with less em-
phasis on temporal sequence. Nonetheless, you can represent sequence and concurrency in a
UML collaboration diagram. In the iUML tool a collaboration diagram is a more static view of what
the responsibilities and interfaces of each class are and how classes will interact.

CMU/SEI-2003-TR-020 23

tions. Terminators are used to represent an abstraction of something outside the domain

[Kennedy 02].

Figure 10 is the class collaboration diagram for the Track Management domain. Comm Inter-
face is a terminator that represents another domain in the system that provides measurements

asynchronously to the Observation Manager class." All other classes communicate synchro-
nously. For example, the diagram shows that the Observation Manager class can synchro-

12
nously invoke the following operations on the Track class: update, create, moveToHistory.

The material presented thus far offers an initial design of the model problem. It has been pre-
sented in the context of an object-oriented approach. We emphasize that the material presented
here is an initial design. The determination of a final design is dependent upon many factors.
In the present case we are interested in performance characteristics of the design. As noted ear-
lier, performance properties will be viewed from two perspectives, namely qualitative and
quantitative. The results of a performance model can then be used to assess the elements of the
design described here. Such information will guide the final choice of a design for measure-
ment-to-track association. It is important to note that this design and performance model for
measurement-to-track association must be integrated into the context for a system solution.

11. The Observation Manager class is marked as a state machine because the iUML tool requires a
class to be represented by a state machine in order to receive asynchronous messages.

12. Although a sub-class that inherits from a super-class inherits all its operations, the iUML tool
does not allow it to show a class invoking inherited operations. For example, even though Track
inherits the delete operation from Observation, it is not possible to show an invocation of the de-
lete operation on Track.

24 CMU/SEI-2003-TR-020

c
0)

E
0)
u
3
(A
a
o

2 1

n > u
0) (ft
i:
O

St
01 I

IT

c
£ =
n: ra
2 i
"O 4)
c <n
ra JD

O O

{5 >^

ft St
0) I

&t 8t

iZ

m

a

11

o

A ■o
ft s
in ra
■0 o
V 0
V m

c
0)

E
0)
3

n
< S

^o^i

•D

W M n n c o
.3 5

SSt

c
0

■« •-

t O)
u n
lA c

J3 ra
02

'5

It
E

o
A
A
h

c c

ni E
V E

0
o

F/gure 10: Class Collaboration Diagram for the Tracl< Management Domain

CMU/SEI-2003-TR-020 25

2g CMU/SEI-2003-TR-020

Candidate Extensions

This section outlines several topics that can be further investigated as candidate extensions to

the model problem.

4.1 Relation to Performance Considerations
We noted in Section 1 that this is the first in a series of reports dealing with a model problem.
Our ultimate goals are two-fold. We want to develop a performance model of the design for the
model problem of measurement-to-track association. The approach is outlined in Figure 11.

1 '

Model
Problem

Definition

n....i«H
Qualitative

Performance
Model

^
Quantitative
Performance

Model
lyii

Figure 11: Overall Model Problem and Solution Context

For a given model problem, one may construct a design for its solution. An example of such a
design is presented in Section 3 of this report. From a candidate design, one may construct a
qualitative performance model. Such models are analytic in presentation and are intended to
shed light on the performance behavior of the proposed solution. One can then elicit quantita-
tive measurements and use them to assess the degree to which the design satisfies the problem
at hand. A very important aspect of Figure 11 is the feedback from the quantitative perfor-
mance model to the design process. In particular, it may be the case that quantitative results
require some aspect of the design to be reconsidered. This implies that an iterative approach is
essential to the development of a solution.

Note that the information contained in Figure 11 is presented in the context of a particular
model problem. It does not show the fact that there can be many operations performed in the
overall system. A systems-level performance model can be viewed as an integration of smaller

performance models.

CMU/SEI-2003-TR-020 27

It is here that the choice of a model problem is of particular importance. Some general criteria
for the selection of a model problem were discussed in Section 2.1. Of special importance is
the degree to which the model problem may be reapplied in other contexts. For example, if
there are many model problems that are similar in structure and function, though not necessar-
ily in detail, to the model problem considered here, hopefully the same approach may be
applied to other problems. Then, one would like to apply the performance models to these
additional problems. Hence, a solution to a well chosen model problem can be applied to mul-
tiple instances of that model problem. We are, in effect, reusing a performance model by
instantiating it in a different, though related context.

4.2 Other Filter Types

4.2.1 Geographic Filters

The RBE filter illustrated in Section 3.5 is an example of a geographic filter, but there are
many other types of geographic filters. A simple example of another geographic filter is an
LLE (latitude, longitude, elevation) filter, shown in Figure 12.

o o

Figure 12: Example of an LLE Filter

An LLE filter would determine the set of all objects of a particular type (such as tracks or mea-
surement reports) that lie a certain distance from a specified absolute point. Notice that the
LLE filter, described above, is similar, but not identical to the RBE filter, discussed earlier. In
the case of the LLE filter, the volume of space defined by the filter is ellipsoidal, while the
RBE filter defined a spherical volume of space. Another difference between the two types of
filters is that the RBE filter defines a range about a relative point in space, while the LLE filter
defines a range about an absolute point in space.

The representation shown in Figure 12 lends itself to the specification of a class of LLE filters.
A description of such a class is shown in Figure 13.

28 CMU/SEI-2003-TR-020

LLE Filter

latitude : Degrees
longitude : Degrees
elevation : Data Miles
semiMajorA : Data Miles
semiMajorB : Data Miles
semiMajorC: Data Miles
X Rotation : Degrees
y Rotation : Degrees
zRotation : Degrees

createO
applyFormulaO

Figure 13: Class Specification for LLE Filter

The LLE filter class has nine attributes that serve as filter criteria: latitude, longitude, eleva-
1 ^

tion, semiMajorA, semiMajorB, semiMajorC, xRotation, yRotation, and zRotation. Specifi-
cation for the Degrees user-defined type is in Figure 14 and specification for the Data Miles
user-defined type is in Figure 15. The create operation takes as parameters the values for the
criteria and sets the respective attributes. The applyFormula operation applies the criteria to a
given observation and returns a Boolean value indicating if the observation meets the criteria.

Type : Degrees

Base Type : Real

Constrained By
0.0 .. 360.0

Description
Represents degrees for angle values.

Figure 14: Specification for tfie Degrees User-Defined Type

13. We include the attributes x, y and z rotations as attributes to support an arbitrary position of the
ellipsoid.

CMU/SEI-2003-TR-020 29

As another example of a geographic filter, consider the annular filter illustrated in Figure 16.

Type Data Miles

Base Type : Real

Constrained By
>=0.0

Description
1 data mile(DM) = 6000 feet

Figure 15: Specification for the Data Miles User-Defined Type

The application of such a filter is to request all objects that are resident inside the annular area,
as indicated by the shading in the filter. It may also possible to request all objects that are resi-
dent outside this annular area. :

o

o

o o

Figure 16: Example of an Annular Filter

The representation shown in Figure 16 lends itself to the specification of a class of annular fil-
ters. A description of such a class is shown in Figure 17.

The annular filter class has six attributes that serve as filter criteria: latitude, longitude, eleva-
tion, innerRadius, outerRadius, and constraint. Specifications for the Degrees type, the Data

30 CMU/SE1-2003-TR-020

Annular Filter

latitude : Degrees
longitude : Degrees
elevation : Data Miles
InnerRadlus : Data Miles
outerRadlus : Data Miles
constraint: Annular Filter Constraint

createQ
apply Formulae

Figure 17: Class Specification for Annular Filter

Miles type, and the Annular Filter Constraint type are in Figure 14, Figure 15, and Figure 18
respectively. The create operation takes as parameters the values for the criteria and sets the
respective attributes. The applyFormula operation applies the criteria to the given observation
and returns a Boolean value indicating if the observation meets the criteria.

Type Annular Filter Constraint

Base Type '. Enumeration

Constrained By
<Constraint:^'

Description
Indicates if the constraint for an annular filter is the
region inside or outside of its boundaries.

Enumeration Values
INSIDE =0
OUTSIDE =1

Figure 18: Specification for tfie Annular Filter Constraint User-Defined Type

4.2.2 Generic Filters

The discussion of filters thus far has been focused on geographic filters. There are other types
of filters that can be used; one type that we will introduce is a generic filter.

CMU/SEI-2003-TR-020 31

an object, in the sense shown in Figure 19.

Class Attribute Operator Value

Figure 19: Relation of <Attribute, Operator, Value>

The choice of operators is dependent upon the data type of an attribute.^^ For example for
Lmeric data types, the usual operators of "equal," "not equal," "greater than, and so on,
!nrHowever the values may also consist of character strings of vanous lineage (e.g.,
ASaiTsO^^^^^^^^^^^ Furthermore, it is possible that an attribute could be a set, and that
fhe op-tors are now those from set theory such as membership, or subset relation.

There is also the matter by which the elements of the tuples are connected. A simple approach
li ht ~ a logical INO operator. Certainly other choices could be made and the choice
of generality of permitted structure would no doubt depend on intended use.

To illustrate the application of a generic filter, suppose we wanted to determine all tracks such

latthral^^^^^^^^^
<attribute=altitude, operator=greater_than, value=1000)

The construction of a filter thus becomes one of identifying the elements of the tuple
<a«ribToperator, value>. The class specification for a generic filter appears m Figure 20.

ticular. we have a set that contains f'"^^^-.^'" ^'f^^^'f", .^^cTeTtypes, or even sets. When
data types; for example, it may contam '^^^^^l^P^^^ needTdescribe a set whose members
describing the problem formally, we are *«f J wrtMhe ne^^^^ approaches. Other
niay be various data types. This ,s ^^^^^^^^^^^^^^^^^ a set of mixed

elsewhere.

CMU/SEI-2003-TR-020

32

Generic Filter
byTime; Boolean
timeOperator: Generic Filter Operator
timeValue : Time of Day
byLatitude: Boolean
latltudeOperator: Generic Filter Operator
iatitudeValue: Real
byLongltude: Boolean
longitudeOperator: Generic Filter Operator
longitudeValue: Real
byMltude: Boolean
altitudeOperator: Generic Filter Operator
altltudeValue: Real
byVelocity: Boolean
velocityOperator: Generic Filter Operator
velocityValue: Real
byType: Boolean
typeOperator: Generic Filter Operator
typeValue: Text

setCriterionO
applyFormulaO

Figure 20: Class Specification for Generic Filter

The specification for the user-defined type Generic Filter Operator is in Figure 21. This user-
defined type determines the operator in the <attribute, operator, value> triplet.

The setCriterionO operation in this class takes as parameters an attribute/criterion of the user-
defined type Filter Criterion, an operator of type Generic Filter Operator, and a value of the
type of the criterion that is being set. The specification for the Filter Criterion user-defined

type is in Figure 22.

For example, if a criterion for the filter is to identify those tracks whose altitude is greater than
1000 miles, the operation would be called setCriterion(ALTITUDE, GREATER, 1000.0). The
setCriterion operation would then set the attribute byAltitude to True, the attribute altitudeOp-

erator to GREATER, and the attribute altitudeValue to 7000.0.

CMU/SEI-2003-TR-020 33

Type : Generic Filter Operator

Base Type : Eiimneratioii

Constrained By
<ConsTrawt>

Description
Represents aflowed op«-ations for comparison of criteria
within a generic filter.

Enumeration Values
EQUAL =1
LESS = 2
GREATER =3
LESS_OR_EQUAL = 4
GREATER_OR_EQUAL = 5
N0T_EQUAL=6

Figure 21: Specification for tf)e Generic Filter Operator User-Defined Type

Type : Filter Criterion

Base Type : Enmneration

Constrained By
<Constramt>

Description
Represents the attribute of the track to set as a criterion.

Enumeration Values
TIME=1
LATITUDE =2
LONGITUDE =3
ALTITUDE = 4
VEL0aTY=5
TYPE = 6

Figure 22: Specification for the Filter Criterion User-Defined Type

34 CMU/SEI-2003-TR-020

This operation has to be overloaded so that there is a setCriterion() operation for each type of
value (float, integer, string, etc.). Multiple criteria can be set by successive calls to the setCri-
terion operation. After all the criteria have been set, the applyO operation is invoked and

applies the criteria to a set of observations.

The resulting class hierarchy for all filter types is shown in Figure 23.

4.2.3 Composition of Filters

A natural question to ask is the degree to which individual filters may be applied in succession.
For example. Figure 24 shows the application of an annular filter, followed by the application
of a rectangular filter. Each filter returns a set of values; in this case shown in Figure 24. We
may represent the composition of filters as:

F = F ANNULAR OF, RECTANGULAR

In Other words the composition operator represents the intersection of the two filters. Other
operators could be chosen; for example, instead of set-intersection, we could use set-union as
the joining operator.

RBERIter

Geographic Filter

X

range: Data Miles
bearing: Degrees
elevation; Data Miles
radius: Data Miles

createO
apply FbrmulaO

LLE niter

latitude: Degrees
longitude: Degrees
elevetion: Data Miles
semiM^orA: Data Miles
semiMajoiB: Data Miles
semiMajorC: Data Miles
xRotalion: Degrees
yRotation: Degrees
zRotation: Degrees

createO
applyFbmulaO

RIter

applyO

"TT

Annular RKer

lalituds
longitude: Degrees
elevalicn: CBta Mies
innerRadus: Data Miles
outerRackJS: Data Miles
constraint: Anniiar FIter Constrcint

createO
applyFomulaO

Genetic RIter

byllme: Boolean
timeOperator: Generic RIter Operator
timeValue: Tinne of Day
byLatitude: Boolean
latitudeCperator: Generic RIter Operator
latitudeValue: Fleal
byLongitude: Boolean
longitudeOperator: Generic RHer Operator
kmgitudeValue: Real
byAltitude: Boolean
aititudeOperator: Generic RIter Operator
idtltudeValue: Real
byVekJClty: Boolean
velocltyOperator: Generic RIter Operator
velocltyValue: Real
byType: Boolean
typeOperator: Generic RIter Operator
typeValue: Text

setCriterionO
applyFomxiaO

Figure 23: Class Hierarchy for Filters

CMU/SEI-2003-TR-020 35

The ability to apply multiple filters is recognized as having value. However, we do not believe
that it represents any conceptual increase in the scope of the problem. Stated differently, the
model problem of filtering can easily be extended to address the case of composition of filters.

o

o

o o

Figure 24: Composition of Annular and Rectangular Filter

4.2.4 Distribution of Filter Information

The scope for the work in this report is a distributed system of multiple platforms. Therefore,
one might naturally question the ability to distribute filters among constituents of the larger
system. For example, an RBE filter may be created in one context, and it is desirable to distrib-
ute that filter to some other context. We use context to refer to a process/processor combina-

tion.

We approach the distributed problem in terms of two dimensions. First, we are interested in the
scope of distribution. In particular, we must consider system issues, and distribution across
process and processor boundaries as defined by the context. The various contexts are shown in

Figure 25.

^

Same Process,
Same Machine

Different Processes,
Same Machine

Different Processes,
Different Machines

O # denote different objects

Figure 25: Contexts for Object Distribution

36 CMU/SEI-2003-TR-020

Second, we are interested in various mechanisms by which filters can be distributed. For dis-
tribution mechanisms we consider

• an object identifier, usually referred to as an object reference

• a message containing the relevant information about a filter

• a message containing a request for object creation

The resulting two-dimensional categorization is shown in Table 2.

Table 2: Category of Problems for Object Distribution

Distribution i\/!echanism

Scope of Distribution
Object
Reference

Message Object
Creation

Same process, same
machine

Not expected

Different processes,
same machine

Different processes,
different machines

As illustrated in Table 2, there are a variety of cases for object distribution. We will illustrate
some of these cases, with a focus on the means of object distribution.

For distribution of objects in the same process on the same machine (such as between threads),
a common approach is to use an identifier, or object reference, for the object of interest. Thus,
one thread may pass an identifier to some object to a different thread, all within the same pro-
cess on the same machine. The receiving thread may then invoke operations on the object.

However, when we move to the case where we wish to distribute some object across different
machines, we are faced with potential challenges. For example, the underlying technology
supporting the object system may not permit an object reference to be distributed (and subse-
quently accessed) across different processes, even in the same machine context. One way out
of this difficulty is to use a message for the means of object distribution. The sequence of oper-
ations between a sender and a receiver of a filter, using a message-based approach might be
the following:

• Sending System

invokes a method to create a message, based on the name of the class, and the values
of the filter's attributes

initiates a communication with a receiving system

• Receiving System

unpacks and validates contents of the filter message

CMU/SE1-2003-TR-020 37

. instantiates an object of the specified class (in this case a filter) with the received

information

Following the above sequence of operations, the receiving system may perform operations on

the filter '^ The operations are those specified in the class description. However, bnngmg m
communication via messaging has opened up a number of questions such as quahty of service,

use of timeouts, and so on.

What happens if the receiving system does not have knowledge of the class? In this case we
must not only distribute attributes of a specified class, but all the relevant information about
the class We are, in effect, considering dynamic class creation. This is highly speculative and

brings into question the use of mobile code and all its attendant issues.

The approach here has been viewed as a two-dimensional problem. In fact, it is possible to

expand the scope to also include the underlying technology used to support objects and
classes In the simplest case, there may be interactions between two identical implementations,
such as common object request broker architecture (CORBA). But there is also interest ma
heterogeneous system where different implementations may be present. In such a case, one
might be interested in interchange between a CORBA implementation and some other imple-

mentation.

Each of the preceding cases for object distribution constitutes a different level of approach to
dealing with objects in a distributed system. Closely related to the design choices are those
assumptions on the system partitioning that will be a constraint on any design approach An
example such as this is a potentially viable choice for a model problem m its own right!

4.3 Doctrine: An Example of Filter Application
We use the tenn doctrine to mean a set of rules that describe the behavior of some system.
Such rules are important to the extent that they govern the system. In cases where doctrine is
automated, without human intervention, it is especially important; one is tummg over the

behavior of a system to a machine.

Apart from machine execution of doctrine statements, such statements have utility from the

perspective of changing the behavior of a system. For example, if an ^P-^^^J-^^" f;
platform, or on some other platform) is able to change a doctrine statement, this can be repre-
sented as the change in the specification of the behavior. There is certainly value m the ability

to another system containing those attributes, and then the 'mef can be applied.

CMU/SEI-2003-TR-020

38

to dynamically change the behavior of some system without performing a software upgrade,
for example.

As an illustration of a doctrine statement, with an eye toward the application of automated
doctrine, consider the following:

If there is a TRACK
range is less than 100 miles
speed is greater than 600 miles/hour
altitude is less than 100 feet
type is unknown.

Then
<perf o2nn_action>.

The preceding represents a doctrine statement simply as an if-then condition.^^ The text
<perf orin_action> represents some action(s) that the system should take in the event that
the if-clause is true. The details of the actions are not relevant to the remainder of this discus-
sion and will be therefore omitted.

The if-clause represents a set of tests that are performed against a track. Note that the tests are
based on attributes of a track (in this case, the track range, speed, altitude, and type). What is
important to note is that the doctrine statement can be represented as a composition of two fil-
ters, namely

• a range filter, as discussed in connection with Figure 12 on page 28

• a generic filter based on track attributes speed, altitude, and type, as specified in Figure 20

We conclude that the if-clause of a doctrine statement can be considered as an application of a
range filter and a generic filter. Recognizing this fact has two important consequences. First, it
serves to illustrate the generality of the use of filters as part of a system design. Second, it fur-
ther illustrates the generality of the model problem we have considered in this report. That is,
to the extent that the model problem can be considered as the construction and application of a
filter, so too does the problem apply to a subset of the processing performed for the application
of doctrine.

4.4 Use of Object Query Language
The filters that have been described in this report have all been constructed in the context of an
object-oriented development. That is, we have created classes for the filters, identified their

16. Notice that the overall time to process the query depends on the ordering of the search criteria.
Query optimization is a common topic and concern for databases.

CMU/SEI-2003-TR-020 39

attributes, and illustrated ways that the filters can be applied. Filters are required to implement
an operation called applyFormula that applies filter criteria to a given track.

It is worth noting that there is an alternative approach to applying the filter criteria to a set of
tracks. We refer specifically to the Object Query Language (OQL) [ODMG 98]. OQL is a
specification developed by the Object Data Management Group (ODMG) that allows one to
perform queries on objects. It is an SQL-like declarative language with support for objects. It
can be used in two different ways, either as an embedded function in a programming language
or as an ad hoc query language. OQL works with programming languages for which ODMG
has defined bindings, such as C++, Java, and SmallTalk. The advantage gained by using OQL
is that it returns objects matching types in the specific programming language so that these

objects can be easily manipulated.

Given the selected modeling tool, a question arises regarding how to include external libraries
within the simulation environment and how to link generated code to external code. A mecha-
nism is provided by the tool to interface to C programs. Further investigation would be
required to determine if the tool can link to libraries in other languages different than C.

The topic of the use of OQL for track filtering, as opposed to direct creation and application of
filter functions, is sufficiently broad to warrant consideration in its own right.

40 CMU/SEI-2003-TR-020

5 Summary

This report is the first in a series that illustrates the use of model problems to the design of a
system. The selected model problem is measurement-to-track association and the development
(and application) of filters as a selector mechanism. By using concepts and constructs from
UML, Executable UML [Mellor 02], and Object-Oriented Analysis [Shlaer 92], the report pre-
sents an initial design of the model problem, as well as candidate extensions related to perfor-
mance considerations, additional filter types, and the distribution of filter information. The
next report in the series will explore performance properties of the initial design, namely qual-
itative and quantitative. The results of that performance model can then be used to assess the
elements of the design described in this report.

CMU/SEI-2003-TR-020 41

CMU/SEI-2003-TR-020

Appendix A Additional Use Cases

This appendix contains the descriptions of the alternate courses for the Measurement-to-Track
Association use case and the Filter Tracks land Propagate Tracks use cases.

UseC^e : 1 : Measurement-To-Track Association
Course : Update Track

Description
1. Measurement collected by the seasor is reported to the
system through the communications link.
2. Fiber Tracks use case is invoked and a set of filtered
tracks is returned.
3. Propagate Tracks use case is invoked so that the filtered
tracks are propagated to measurement time t.
4. Filter Tracks use case is invoked again with the
propagated tracks to make sure that the initial criteria
still appl>'. Candidate tracks that do not match the flter
criteria are eliminated.
5. Algorithms are jpplied to the candidate tracks to
determine the likelihood that the measurement should be
associated with a candidate track.
6. For the candidate track whose association value is larger
than the acceptable threshoW, corresponding track data is
sent to track histor>' and then updated with tiie reported
measurement data.

Postcondition
For the candidate track whose association vakie is larger
than the acceptable threshold, corresponding track data is
sent to track histor>' and then updated with the reported
measurement data.

Figure 26: Update Track—Alternate Course for the Measurement-to-Track
Association Use Case

CMU/SEI-2003-TR-020 43

Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Initial Tracks Returns

No Tracks and Track is Created

Description
1. Measurement collected by the sensor or communications
interface is reported to the system through the
commiuiications link.
2. Filter Tracks use case is invoked and an empt>' set of
filtered tracks is returned.
3. An algorithm is applied to determine if the measurement
provides additional data so that one can decide from looking
at the set of yet imassociated measurements if there is
enough information for a new track to be created.
4. Because there is enougli information, a new track is
created based on the reported measurement data plus the set
of related unassociated measurements.
5. The measurement is added to the set of associated
measurements and linked to the newfy created track.

Postcondition
A new track is created and the measurement is added to die
set of associated measurements and linked to the newh'
created track.

Figure 27: Filter Applied to Initial Tracks Returns No Tracks and Track is
Created—Alternate Course for the Measurement-to-Track
Association Use Case

4^ CMU/SEI-2003-TR-020

Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Propagated Tracks Returns

No Tracks and Track is Created

Description
1. Measurement collected by the sensor is reported to the
system through the communications link.
2. Filter Tracks use case is invoked and a set of filtered
tracks is returned.
3. Propagate Tracks use case is invoked so that the filtered
tracks are propagated to measurement time t.
4. Filter Tracks use case is invoked again with the
propagated tracks to make sure that the initial criteria
still apph' but no tracks remain after reapplying the
filter.
5. An algoritlim is aK>lied to determine if the measurement
provides additional data so that one can decide fi-om looking
at tiie set of yet unassociated measurements if there is
enough information for a new track to be created.
6. Because there is enough information, a new track is
created based on the reported measurement data plus the set
of related imassociated measurements.
7. The measurement is added to tlie set of associated
measurements and linked to the new^ly created track.

Postcondition
A new track is created and the measurement is added to Uie
set of associated measurements and linked to the newty'
created track.

Figure 28: Filter Applied to Propagated Tracks Returns No Tracks and Track is
Created—Alternate Course for the Measurement-to-Track Association
Use Case

CMU/SEI-2003-TR-020 45

Use Case : 1 : Measurement-To-Track Association
Course = Create Unassociated Measurement

Description
1. Measurement collected by the sensor is reported to the
system through the communicatioas link.
2. Filter Tracks use case is invoked and a set of filtered

tracks is returned.
3. Propagate Tracks use case is invoked so that the filtered
tracks are propagated to measurement time t.
4. Filter Tracks use case is invoked again with the
propagated tracks to make sure that the mitial criteria
stiD appfy. Candidate tracks that do not match the filter

criteria are eliminated.
5. Algorithms are sgjplied to the candidate tracks to
determine the likeHiood that tlie measurement should be
associated with a candidate track.
6. Because there were no candidate tracks that showed
association vahxes above the accepted tlireshold, an
algorithm is applied to determine if the measurement
pro\Tdes additional data so that one can decide fi-om boking
at the set of yet unassociated measurements if there is
enough information for a new track to be created.
7. Because there is not enough information to create a new
track the measurement is added to the Ikt of imassociated

measurements.

Postcondition
The measurement is added to the list of unassociated

measurements.

Figure 29: Create Unassociated Measurement—Alternate Course for tlie
Measurement-to-Tracl< Association Use Case

CMU/SEI-2003-TR-020
46

Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Initial Tracks Returns No

Tracks and Track is Not Created

Description
1. Measurement collected by the sensor or communications
interface is reported to tlie system through the
communications Jink.
2. Filter Tracks use case is invoked and an empty set of
filtered tracks is returned.
3. An algorithm is applied to determine if the measurement
provides additional data so that one can decide from looking
at the set of yet unassociated measurements if there is
enough information for a new track to be created.
4. Because there is not aiough information to create a new
track die measurement is added to the list of unassociated
measurements.

Postcondition
The measurement is added to tlie list of unassociated
measurements.

Figure 30: Filter Applied to Initial Tracks Returns No Tracks and Track is Not
Created—Alternate Course for the Measurement-to-Track Association
Use Case

CMU/SEI-2003-TR-020 47

Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Propagated Tracks Returns Nc

Tracks and Track is Not Created

Description
1. Measurement collected by the sensor is reported to the
system through the communications link.
2. Filter Tracks use case is invoked and a set of filtered
tracks is retiirned.
3. Propagate Tracks use case is invoked so that the filtered
tracks are propagated to measurement time t.
4. Filter Tracks use case is invoked again with the
propagated tracks to make sure that the initial criteria
still apph' but no tracks remain after reappfying the
filter.
5. An algoritlim is applied to determine if the measurement
provides additional data so that one can decide from boking
at the set of yet unassociated measurements if there is
enough information for a new track to be created.
6. Because tliere is not enough information to create a new
track the measurement is added to the list of unassociated
measurements.

Postcondition
The measurement is added to the list of unassociated
measurements.

Figure 31: Filter Applied to Propagated Tracks Returns No Tracks and Track is Not
Created—Alternate Course for the Measurement-to-Track Association
Use Case

48
CMU/SEI-2003-TR-020

Use Case : 2 : Filter Tracks

Purpose
A set of tracks is examined to determine if the^* match the
set of criteria specified by filter.

Precondition
There is a set of tracks.

Requirements Satisfied by this Use Case
<Norw>

Basic Course :
Filter Tracks and Create Copies of Matching Tracks

Alternate Courses
Refiher Tracks and Remove Non-Matching Traclra

Includes

Included By
-> 1: Measuremeiit-To-Track Assoctation

Extends

Extended By

Communicates With

Figure 32: Filter Tracl<s Use Case

CMU/SEI-2003-TR-020 49

Use Case : 2 : Filter Tracks
Course : Filter Tracks and Create Copies of iVIatchIng Tracl<s

Description
1. A filter is, created witli values for its criteria.
2. The filter is gi\'en a set of tracks of tracks.
3. An empty tst of candidate tracks is created.
4. For each track in the set of tracks

4.1. Track attribute values are compared to filter

criteria
4.2. If the track satisfies the filter criteria it is

copied and added to the list of candidate tracks.
5. Set of candidate tracks is retiirned.

Postcondition
Set of candidate tracks is returned.

Figure 33: Filter Tracks and Create Copies of Matciiing Tracl<s—Basic Course for tlie
Filter Tracl<s Use Case

Use Case : 2 : Filter Tracks
Course : Refilter Traclts and Remove Non-IVIatching Tracks

Description
1. An existing filter is given a set of tracks of tracks.
2. For each track in the set of tracks

2.1. Track attribute values are compared to filter

criteria.
2.2. If the track does not satisfy the filter criteria

it is removed from the list of tracks.
3. Set of refiltered candidate tracks is returned.

Postcondition
Set of refihered candidate tracks is returned.

Figure 34: Refilter Tracks and Remove Non-I^atching Tracks—Alternate Course for the
Filter Tracks Use Case

50 CMU/SEI-2003-TR-020

Use Case : 3 : Propagate Tracks

Purpose
Tracks are propagated to a gh-en time t.

Precondition
Tliere is a set of tracks.

Requirements Satisfied bytliis Use Case
<None>

Basic Course :
Propagate Tracks

/Uternate Courses

Includes

Included By
-> 1: Measuremeat-To-Track Association

Extends

Extended By

Communicates With
Figure 35: Propagate Tracks Use Case

Use Case : 3 : Propagate Tracks
Course : Propagate Tracks

Description
For each set in a set of tracks:
1. i^>ply propagation algoritlmi
2. t^date track attribute values correspondingly

Postcondition
Tracks in the set are updated to reflect propagation to time
t.

Figure 36: Propagate Tracks—Basic Course for the Propagate Tracks Use Case

CMU/SEI-2003-TR-020 51

52 CMU/SEI-2003-TR-020

Appendix B Details of Classes

This appendix contains the description of the classes in the Track Management domain in

alphabetical order.

Table 3: Description of tlie Associated Measurement Ciass

Class Name Associated IVIeasurement

Description A measurement that has been associated to an existing track

Attributes

Name Description Type

id (from Obsen/ation) Unique identification number
for measurement

MeasurementlD^

time (from
Observation)

Time measurement was made Time of Day

latitude (from
Observation)

Latitude of measurement Real

longitude (from
Obsen/ation)

Longitude of measurement Real

altitude (from
Obsen/ation)

Altitude of measurement Real

sensorld (from
Measurement)

Identification of the sensor that
received the measurement

SensorlD^

Operations

Name Description Parameters Return Type

delete (from
Obsen/ation)

Deletes a measurement None None

create (from
l\/leasurement)

Creates a measurement with
the received measurement
data

One parameter per
measurement
attribute

None

linkToTrack Links the associated
measurement to the given
track

track: Trac/f None

a. MeasurementID is a user-defined type tliaf needs to be specified.

b. SensorlD is a user-defined type that needs to tie specified.

CMU/SEI-2003-TR-020 53

Table 4: Description of tlie Candidate Observation Ciass

Class Name

Description

Candidate Observation

When a filter is first applied either to a set of tracks or a set of
measurements, a Candidate Observation is created for each track
or measurement that matches the filter criteria.

Attributes

Name Description Type

id (from Observation) Unique identification number
for the candidate observation

Observation ID^

time (from
Obsen/ation)

In case of measurement, time
observation is received; in
case of track, time of latest
observation associated with
the track

Time of Day

latitude (from
Observation)

Latitude of observation Real

longitude (from
Obsen/ation)

Longitude of observation Real

altitude (from
Observation)

Altitude of observation Real

associationValue Association value between an
observation and a given
measurement

Real

Operations

Name Description Parameters Return Type

delete (from
Obsen/ation)

Deletes a candidate
observation

None None

propagate Propagates a candidate
observation to time t and
updates attribute values
accordingly

t: Time Of Day None

associate Associates a candidate
observation to a given
measurement and updates the
associationValue attribute

measurement:
l^easurement

None

create Creates a candidate
observation by creating a copy
of the given observation

observation:
Observation

None

a. Observation! D is a user-defined type that needs to be specified.

54 CMU/SEI-2003-TR-020

Table 5: Description of the Filter Class

Class Name Filter

Description Base class for all filters. A filter applies a set of criteria to a set of
observations to determine if they meet the filter criteria.

Attributes
Name Description Type

Operations

Name Description Parameters Return Type

apply Applies a filter to a set of
observations and creates a set
of candidate observations by
copying those that match the
criteria

listOfObservations:
Obsen/ation

listOfCandi-
dateObser-
vations:
Candidate
Obsen/ation

reapply Applies the filter to a set of
candidate observations and
deletes those that do not sat-
isfy the filter criteria

listOfCandidateOb-
servations: Candi-
date Observation

newListOf-
Candida-
teObservati
ons: Candi-
date Obser-
vation

CMU/SEI-2003-TR-020 55

Table 6: Description of ttie Measurement Class

Class Name

Description

Attributes

Name

id (from Observation)

time (from
Observation)

latitude (from
Observation)

longitude (from
Observation)

altitude (from
Observation)

sensorld

Operations

Name

delete (from
Observation)

create

Measurement
All measurements provided by a sensor or communications inter-
face and received by the Track Management domain

Description

Unique identification number
for measurement

Time measurement was made

Latitude of measurement

Longitude of measurement

Altitude of measurement

Identification of the sensor that
received the measurement

Type

MeasurementlD^

Time of Day

Real

Real

Real

SensorlD''

Description

Deletes a measurement

Creates a measurement with
the received measurement
data

Parameters

None

One parameter per
measurement
attribute

Return Type

None

None

a. MeasurementID is a user-defined type that needs to be specified.

b. Sensorl D is a user-defined type that needs to be specified.

56
CMU/SEI-2003-TR-020

Table 7: Description of ttie Observation Class

Class Name Observation

Description Object data managed within tiie Track Management domain-
measurements and tracks

Attributes
Name Description Type

id Unique identification number

for the observation^

Observation ID

time In case of measurement, time
observation is made; in case of
track, time of latest observation
associated with the track

Time of Day

latitude Latitude of observation Real

longitude Longitude of observation Real

altitude Altitude of observation Real

Operations

Name Description Parameters Return Type

delete Deletes an observation None None

a. This attribute is overridden by the id attribute In its subclasses: Measurement, Track, Track History.

CMU/SEI-2003-TR-020 57

Table 8: Description of tlie Observation Manager Class

Class Name

Description

Observation Manager

Handles the sequence and setup of all the measurement-to-track
association operations ___^__^^_

Attributes

Name

associationThreshold

Operations

Name

associateMeasuremen
t ToTracks

formTrack

Description

Threshold association value for
determining whether a
measurement is associated to
a track

Type

Real

Description

Handles the sequence and
setup of the operations that
take place is measurement-to-
track association

Determines if there is enough
information in the set of
unassociated measurements
that can be combined with the
received measurement to'form
a track

Parameters

measurementData:

Undefined^

None

Return Type

None

None

a. The type of parameter measurementData will depend on how the signal containing the measurement data is structured.

58 CMU/SEI-2003-TR-020

Table 9: Description of the RBE Filter Class

Class Name RBE Filter

Description
Given a position defined by range, bearing, and elevation, this type
of filter will define a volume about that position.

Attributes

Name Description Type

range Range criteria for filter Data Miles^

bearing Bearing criteria for filter Degrees''

elevation Elevation criteria for filter Data Miles

radius Radius criteria for filter Data Miles

Operations

Name Description Parameters Return Type

apply (from Filtei) Applies the RBE filter to a set
of observations and creates a
set of candidate observations
by copying those that match
the criteria

listOfObservations:
Observation

listOfCandi
dateObserv
ations:
Candidate
Observation

reapply (from Filter) Applies the filter to a set of
candidate observations and
deletes those that do not
satisfy the filter ci-iterla

listOfCandidateObse
rvations: Candidate
Observation

newListOfC
andidateOb
servations:
Candidate
Observation

create Creates an RBE filter by
setting the range, bearing,
elevation, and radius attributes
with the given values

range: Data Miles,
bearing: Degrees,
elevation: Data
Miles, radius: Data
Miles

None

applyFormula Applies the filter specific for-
mula to a given observation

observation: Obser-
vation

meetsCrite-
ria: Boolean

a. The Data Miles user-cJefined type is specified in Set^tion 4.2, Figure 15.

b. Tlie Degrees user-defined type is specified in Section 4.2, Figure 14.

CMU/SEI-2003-TR-020 59

Table 10: Description of ttie Track Class

Class Name

Description

Attributes

Name

id (from Observation)

time (from
Observation)

latitude (from
Obsen/ation)

longitude (from
Obsen/ation)

altitude (from
Observation)

velocity

type

Operations

Name

delete (from
Observation)

update

create

moveToHistory

Tracit

State data about a track object

Description

Unique identification number
for track

Time of latest observation
associated with the track

Latitude of track

Longitude of track

Altitude of track

Calculated velocity for the track
object

Type of track; i.e. air, surface,
ballistic, etc.

Description

Deletes a track

Updates a track with
information from a given
measurement

Creates a track with
information from a given
measurement

Creates a copy of the track in
Tracl< History \N\\h its current
values

a. TrackID is a user-defined type that needs to be specified.

b. TrackType is a user-defined type that needs to be specified.

Type

TrackID^

Time of Day

Real

Real

Real

Real

TrackType"^

Parameters

None

measurement:
Measurement

measurement:
Measurement

None

Return Type

None

None

None

None

60
CMU/SEI-2003-TR-020

Table 11: Description of ttie Track History Class

Class Name Tracl< l-listory

Description State data about an object

Attributes

Name Description Type

id (from Track) Identification number of
associated track

TrackID

time (from
Observation)

Time of observation associated
with the track

Time of Day

latitude (from
Observation)

Latitude of track Real

longitude (from
Observation)

Longitude of track Real

altitude (from
Observation)

Altitude of track Real

sequence Marks the sequence of the
track in its history

Real

Operations

Name Description Parameters Return Type

delete (from
Observation)

Deletes a track from its history None None

copyTrack Copies the given track
information to the track history
and assigns a sequence
number

track: Track None

CMU/SEI-2003-TR-020 61

Table 12: Description of the Unassociated Measurement Class

Class Name Unassociated IVIeasurement

Description
A measurement that has not yet been associated to an existing
track

Attributes

Name Description Type

id (from Observation) Unique identification number
for measurement

Measurement! D^

time (from
Observation)

Time measurement was made Time of Day

latitude (from
Obsen/ation)

Latitude of measurement Real

longitude (from
Observation)

Longitude of measurement Real

altitude (from
Observation)

Altitude of measurement Real

sensorld (from
Measurement)

Identification of the sensor that
received the measurement

SensorlD^

Operations

Name Description Parameters Return Type

delete (from
Observation)

Deletes a measurement None None

create (from
Measurement)

Creates a measurement with
the received measurement
data

One parameter per
measurement
attribute

None

moveToAssociated Converts the unassociated
measurement to an associated
measurement

None None

a. MeasurementID is a user-defined type that must be specified.

b. SensorlD is a user-defined type that must be specified.

62 CMU/SEI-2003-TR-020

Appendix C Additional Sequence
Diagrams

This appendix contains the'sequence diagrams for the following Measurement-To-Track Asso-
ciation use case alternate courses:

Filter Applied to Initial Tracks Returns No Tracks and Track is Created

Filter Applied to Propagated Tracks Returns No Tracks and Track is Created

Create Unassociated Measurement

Filter Applied to Initial Tracks Returns No Tracks and Track is Not Created

Filter Applied to Propagated Tracks Returns No Tracks and Track is Not Created

CMU/SEI-2003-TR-020 63

: Communlcalions
Link

: Obsefvalion : Unassociated
MRasuiemenl

measurement I
: Candidate
Obser\gtion

associateMeasurementToTracl<s()

creale(measuregifntData)

create (range, bcarjng, elevation, lacSus]

apply (istbrrtacks)

(i(listOfCandidate(rracks is empty] toriyiTrack()

*: Get Track Da a
 >l'i

•: applyFormulaT)

^ I I

[if track satisfie; filter criteria] crekte{)

•: Get Measuremdnt Data
 — >?■

(if enougti data to|create track] create measutementDatB)

•; mo\eToAssociated()

: Associated
Measurement

I Ttiese operations occur for all the unassociated T^
measurements ttiat contributed to the fomiing of the
track, ,

Figure 37: Sequence Diagram for tlie Measurement-to-Tracl< Association Use Case
Alternate Course—Filter Applied to Initial Tracks Returns No Tracks and
Track Is Created

64
CMU/SEI-2003-TR-020

n

: Communications
Unk

: Observation
Manager

measurement

: Unasscciated
Measurement

create(mea5uremfnlData)

: Track : Candidate
Olaervation

: Associated
Measurement

associateMeasurErnentToTracks() ^ r f ^
create (range, bearing, eie\ation, radius

apply (IstbfTracks)

: Get Track Data
 >'i

': applyFormulaf)

[if track satisfies filter criteria] create()

: pn]pagate(time)

reApply (listOf QandidateTracks) 1
': Get Candidate Track Data

applyForTnuia()

[if candidate track does not satisfy fitter critei a] delete()
 1 -sJ

[if listOfCanddal^racks is empty] fbrmTrack()

*: Get Measurement Data

[if enough data tqcreate track) createjmeasurementDatp)

*: mo\eToAssociated()

"■'V ': create(meas irementData)

•: delete()
.<-

J ^

lin|<ToTrack(tAcklD;

These operatioos occur for afl the unassociated
measurements ttiat contributed to the forming of the
track.

Figure 38: Sequence Diagram for the Measurement-to-Tracl< Association Use Case
Alternate Course—Filter Applied to Propagated Tracks Returns No Tracks
and Track Is Created

CMU/SEI-2003-TR-020 65

X
: Communications

JJnk

: Obsenation
Manaoer

: Unassociated
Mflasuremenl

: Track : Candidate
Otiservation

measufemenl
associateMeasurerfienlToTracks() V

ciEate(measurgTi|nlDat a)

create(range, Ijearing, elevation, radius) learing

(iistbr apply (iistbtTracks)

: Get Track Data
 >':

': applyFormulal])

(if track satisfied filter cnteria] crekte()

I Ti

•: propagate(time)

dandid. reApply (listOf qandidateTracks)

[if candidat

: Get Candidate Track Data

applyFormula()

track does not talisfy filter criteiiah delete()

': associateO

[if no tracks wtierW associalionValue >

U

associationThreshold] tor7nTrack()

Get Measurenjerit Data ^

>

Use case stops here tjecause ttiere is not enough
data to create a new track

Figure 39: Sequence Diagram for ttie Measurement-to-Tracl< Association Use Case
Alternate Course—Create Unassociated Measurement

66
CMU/SEI-2003-TR-020

o.

: Communications
ynk

: Observation
Manager

nneasurement

: Unassoclaled
Measurement

emei

: RBE Fiter

associateMeasuremenfToTracks()

: Candidate
Oiisetvalion

ciEate(mea5uremyitOata) egigntl

create (range, tearing, elevation, radiusi)

apply (listbfTracks)

*: Get Track Data

-^^^
': applyFormulaf)

|il track satisles liter criteria] create()
 5vi

*: propagate(time)

reApply (listOf QandidateTracks)

->rS

[il candidat

1

jtenTr

Get Candidate Track Data

applyFormula{)'

track does not satisly Ulter criteria) delete()

|if listOfCandidateTracks is empty] lomTrack()

": Gel Measurement Data
 <::: >n

^1
Use case stops tiere tjecause there is not enougti L^

data to create a new track. I

Figure 40: Sequence Diagram for tiie Measurement-to-Tractc Association Use Case
Alternate Course—Filter Applied to Initial Tracks Returns No Tracks and
Track Is Not Created

CMU/SEI-2003-TR-020 67

: Communications
Link

: Observalion
Manager

: Unassocialed
Measurement

: RBE Filer : Cafididaie
Observation

nneasurement
associateMeasurernenfToTracks() y f ?
cjealeJne^ur^TyitOaa)

Li
create (range, beating, elevation, radiusj)

apply (listblTracks)
•: Get Track Data

■: applyFormulaf)

7^ 1
[il track satisfei liter criteiia] crebte()
-„ j ^r-i

reApply (listOI dandidateTracks)

■; propagate(time)
->i^

Get Canddale Track Data

applyFoimula()

lif candidate track does not satisfy filter criteria] delete() r >

|if listOfCandidateTracks is empty] forJnTrack()

•; Get Measurement Data
 ■^. >-i

Use case stops here because Ifiene is not enougti
data to create a new track.

"b,

Figure 41: Sequence Diagram for the Measurement-to-Tracl< Association Use Case
Alternate Course—Filter Applied to Propagated Tracks Returns No Tracks
and Track Is Not Created

68
CMU/SEI-2003-TR-020

Appendix D Measurement-to-Track
Association in the Sensor
IVIanagement Domain

The measurement-to-track association functionality in the model problem has been assigned to
the Track Management domain because of the tight coupling between this function and the
track and measurement data. There has been some discussion as to whether the measurement-
to-track association should be assigned to the Sensor Management domain. The rationale for
this alternative is that the algorithms for association are expected to be dependent on the type
of sensor and therefore it would be better to maintain these algorithm differences in the Sensor
Management domain. The problem with this approach is the access to track data that would
still reside in the Track Management domain.

This appendix discusses the potential changes to the design of the model problem as well as
the consequences of placing measurement-to-track association in the Sensor Management

domain.

D.1 Changes to the Design of the Model Problem
The changes to the design of the model problem are minimal since domains are essentially sets
of closely related objects that are treated as a unit for purposes of analysis. In other words, they
correspond to the way that the project has decided to divide and allocate functionality in a sys-
tem. The changes to the design of the model problem would be

1. Move the classes that contain the measurement-to-track association functionality in the
Track Management domain to the Sensor Management domain.

2. Define the relationships between the newly moved classes and the classes that already
exist in the Sensor Management domain.

3. Decide on the mechanism for accessing track data and make the appropriate changes to the
model.

This last point is critical and will be the focus of the next section.

CMU/SEI-2003-TR-020 69

D.2 Consequences of Measurement-to-Track Associ-
ation in the Sensor IVIanagement Domain

The separation between the measurement-to-track association functionality and the track data

introduces a design problem for which there are two alternatives:

1. Keep the track data in the Track Management domain and have the Sensor Management
domain communicate with the Track Management domain every time it needs access to

data.

2. Maintain copies of the track data in the Sensor Management domain.

D.2.1 Track Data in Track Management
This option has the advantage of not having to maintain replicated track data, but has a poten-
tial for performance problems if the Track Management domain and the Sensor Management
domain reside on different machines. These potential performance problems are caused by the
tight coupling between track data and measurement-to-track association, as can be seen in the

sequence diagrams in Section 3.6 and Appendix C.

If this is the option selected, the domain model would have to be updated to include the com-
munication between the Track Management and Sensor Management domains, and the
sequence diagrams and class collaboration diagram would also have to be updated to show this

communication.

D.2.2 Track Data Replicated in Sensor Management
This option has the advantage of keeping track data local to the measurement-to-track associa-
tion functionality but has challenges introduced by replication, such as data consistency. If a
copy of the track data is going to be maintained in Sensor Management, a decision must be
made as to how and how often this copy will be updated. If a pull mechanism is used, then the
Sensor Management domain would have to poll the Track Management domain for changes in
track data and retrieve those changes. If a push mechanism is used, then the Track Manage-
ment domain would have to send track data changes to the Sensor Management domain, which
would then have to apply these changes to its copy of the track data. Replication introduces
performance issues (as this is yet another process that would have to be performed in the sys-
tem) as well as data contention issues (as track data would probably have to be locked as this

process is performed).

If this is the option selected, the design of the model problem would not have to change
beyond what was expressed earlier, but then the functionality for updating track data, which is

CMU/SEI-2003-TR-020

outside of measurement-to-track association, would have to be added to the appropriate

domain(s).

D.3 Summary
The problemof allocating functionality to domains is a part of Object-Oriented Analysis. In
this appendix we have discussed an alternative for the allocation of measurement-to-track-
association, as well as pros and cons of different approaches. The bottom line, we find, is that
the allocation of functionality to domains is not only a function of the functional model, but

also a function of non-functional models such as performance.

CMU/SEI-2003-TR-020 71

72 CMU/SEI-2003-TR-020

References

All URLs are valid as of the publication date of this report.

[Booch 99] Booch, G; Jacobson, I.; & Rumbaugh, J. The Unified Software
Development Process. Boston, MA: Addison-Wesley, 1999.

[Cockburn 00] Cockburn, A. Writing Effective Use Cases. Boston, MA:

Addison-Wesley, 2000.

[Kennedy Carter 02] Kennedy Carter, Ltd. iUML User Guide. Surrey, UK: 2002.

[Mellor 02] Mellor, S. & Balcer, M. Executable UML: A Foundation for
Model-Driven Architecture. Boston, MA: Addison-Wesley, 2002.

[ODMG 98] ODMG OQL User Manual, Release 5.0. Westboro, MA: Ardent
Software, 1998. <http://www.cis.upenn.edu/~cis550/oql.pdf>

(1998).

[OMG 03] OMG Unified Modeling Language Specification, Version 1.5.
Needham, MA: Object Management Group, 2003.
<http://www.omg.org/technology/documents/fornial/uml.htm>

(2003).

[Shiaer 92] Shlaer, S. & Mellor, S. Object Lifecycles: Modeling the World in
States. Yourdon Press Computing Series. Englewood Cliffs, NJ:

Prentice-Hall International, 1992.

CMU/SEI-2003-TR-020 73

74 CMU/SEI-2003-TR-020

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instmctions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of infomiation. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this bunjen, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway. Suite
1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Papen«ort< Reduction Project (0704-0188), Washington, DC 20503.

6. AGENCY USE ONLY (leave blank) 7. REPORT DATE

September 2003

8. REPORT TYPE AND DATES COVERED

Final

9. TITLE AND SUBTITLE

A Model Problem Approach to Measurement-to-Track Association

10. FUNDING NUMBERS

C —F19628-00-C-0003

11. AUTHOB(S)

Grace A. Lewis and B. Craig Meyers
12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie l\/lellon University
Pittsburgh, PA 15213

13. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TR-020

14. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731 -2116

15. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2003-020

16. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This is the first in a series of reports that illustrate the use of model problems in the design of a system. The
problem considered is measurement-to-track association. A 'Irack" represents the state data about an object
in the environment, and has a set of associated attributes. "Measurement-to-track association" is the process
of determining the relation between a measurement and an existing track. In this process, tracks that meet
particular attribute criteria can be selected via filters. This report examines the development and application
of filters that can be used as selector mechanisms. The report also presents an initial design of the model
problem, by using concepts and constructs from Unified Modeling Language (UML), executable UML
(xUML), and Object-Oriented Analysis (OOA). Also covered are possible extensions to this work, related to
performance considerations, additional filter types, and the distribution of filter information.

14. SUBJECT TERMS

acquisition; acquisition process; formal model

15. NUMBER OF PAGES

84
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

NSN 7540-61-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

Standard Form 458 (Rev. 2-69)
Prescribed by ANSI Std. Z39.18
298-102

